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The surface structure of a restricted-curvature model is studied. If evaporation and deposition
are allowed equally, the surface width W increases as t° with 8 = 0.365 + 0.01 (d = 1 + 1) and
B =0.24+0.01 (d = 2 + 1) being consistent with the results of a fourth-order linear equation which
describes growth under surface diffusion. In the nonequilibrium situation, the average velocity of
the surface height decreases exponentially with time and the surface becomes frozen in the long-time
limit. Near this nonequilibrium pinning transition, the crossover length diverges as a power law in

the deviation from equilibrium.

PACS number(s): 05.40.+j, 05.70.Ln, 68.35.Fx, 61.50.Cj

There have been considerable recent efforts in study-
ing the surface structure of various growth models [1].
Among them, the solid-on-solid (SOS) model has been
extensively used [1-10] to study both equilibrium and
nonequilibrium surface properties. The SOS model can
be considerably simplified by restricting the height dif-
ference between the nearest neighbors without losing
any generality. In this restricted solid-on-solid (RSOS)
model, overhangs, and vacancies are not allowed and also
the short wavelength fluctuations are suppressed. Specif-
ically, nonequilibrium growth in the RSOS model [2] is
well-described by the Kardar-Parisi-Zhang (KPZ) equa-
tion [11]. In fact, the RSOS model has led to some of
the best numerical estimates of KPZ growth exponents.
Here, we introduce a restricted-curvature (RC) growth
model which has a restriction on the local surface cur-
vature. We find that the RC model has a universality
class different from the KPZ universality and, in addi-
tion, the nonequilibrium RC model leads to a new type
of restricted-curvature-driven surface pinning transition
where the long-time surface configuration becomes frozen
and no further growth is allowed.

Most theoretical efforts concentrate on studying the
surface structure of the growth models, especially on de-
termining the dynamical critical exponents governing the
surface fluctuations. The basic dynamic scaling hypothe-
sis is that, in a finite system of lateral size L, the standard
deviation or the root-mean-square fluctuation W of the
surface height starting from a flat substrate scales as [3]

W(t) ~ L2f(t/L7), (1)

where the scaling function f(z) is z” (with 8 = «a/z)
for < 1 and is constant for z > 1. The universality
class of a growth model is determined by the values of the
dynamical exponents a and 8 (or z). One of the major
recent issues in the literature has been the universality
class of various atomistic growth process, e.g., molecu-
lar beam epitaxy (MBE). It has been suggested [5-10]
that some simple atomistic models for MBE growth may
belong to a universality class different from KPZ class.
While there is some recent experimental evidence [12]
supporting this claim, the issue is still quite controver-
sial. It would, therefore, be helpful if one could construct

1063-651X/93/48(4)/2599(4)/$06.00 48

simple alternate models that would belong to the same
universality class as these so-called “MBE growth mod-
els” whose distinguishing feature is that growth occurs
under surface diffusion conditions, in that the deposited
atoms relax (before incorporation into the growing film)
by diffusing to the local kink sites (or, equivalently by
maximizing the local coordination number). The impor-
tant result of this paper is the introduction of an equi-
librium model, namely the equilibrium RC model, which
belongs to the same universality class as the nonequi-
librium linear “MBE growth model” studied in several
recent publications [5-8,10,13).

The fourth-order continuum linear equation, i.e., the
linear “MBE growth model,” describing growth under
surface diffusion is given by

Oh(x,t) _ VV4h(x,t) + n(x, t), (2)

ot

where 7(x,t) is an uncorrelated Gaussian noise. This
equation can be solved exactly giving a = (5 — d)/2 and
z =4, ie., B = (5—d)/8 Atomistic simulation [5-10]
shows that random deposition on SOS growth models
allowing diffusion to local kink sites produces dynami-
cal growth exponents given by this linear fourth-order
differential equation, and our simple RC model, in the
equilibrium case, has exactly the same exponents.

The growth rule of the equilibrium RC model is to
randomly select a site on a (d — 1)-dimensional substrate
and then take a random action between deposition or
evaporation (within the SOS restriction) with equal prob-
ability, provided the restriction on the local curvature
|[V2h| < N is obeyed at both the selected site and the
nearest-neighbor sites where IV is a preassigned fixed pos-
itive integer. If this RC condition is not satisfied, the
corresponding deposition or evaporation event is forbid-
den. (No relaxation or hopping of the deposited atom
is allowed in the model.) Thus, the model is analogous
to the RSOS model, except that the restriction is on the
local curvature V2h rather than on the height difference.
Most of our simulations are performed with V = 2 or 6
ind=1+4+1and N =4or 6 ind =2+ 1, starting from
a flat surface with periodic boundary conditions in the
d — 1 dimensions. The values of the exponents are found

2599 ©1993 The American Physical Society



2600

to be independent of N as long as N is greater than or

equal to 2(d —1). The time ¢ corresponds to the number
of Monte Carlo steps. We find that this equilibrium RC
model gives a =~ (5 — d)/2 and 8 = (5 — d)/8 within our
numerical accuracy ind =1+ 1 and d = 2 + 1, and thus
belongs to the same universality class as Eq. (2).

Since there is a restriction only on the curvature, the
height difference between the nearest neighbors can be
arbitrarily large. For 1 <« t < L?, the surface width
increases as t? and eventually saturates when the paral-
lel correlation t1/% is of the order of the lateral system
size L. In Fig. 1, we show some typical surface config-
urations in the saturated regime for L = 40, d = 1 + 1,
and N=2. Even though the slope |Vh| varies slowly due
to the curvature restriction, the slope can be arbitrarily
large in contrast to other models, e.g., the RSOS model
where |Vh| cannot become very large.

To determine 3, the exponent governing the rate of
growth of the interface width, we measure W (t) as a func-
tion of time for the system size L = 100000 (d =1+ 1)
and 500 (d = 2+ 1). Through the relation W (t) ~ ¢# for
early time t < L?, we obtain

g [0365£001, d=1+1,
=1024+£001, d=2+1,

N=6¢6
N =6. 3)

In each case 50 independent runs are averaged to get good
statistics. Since the data in Fig. 2 are slightly curving up-
wards, these 3 values are consistent with 8 = (5 — d)/8.
[In d = 1+ 1, if we extrapolate to estimate 3 for ¢ — oo,
assuming a constant correction to scaling of the form
W2(t) ~ t?#+C where C is a constant, we get 8 = 0.375.]

To determine the roughness exponent a describing the
saturation of the interface fluctuation, we use the relation
W(L) ~ L™ for the system size L in the steady-state
regime t > L?. Since the value of z is around 4, it takes a
very long time to arrive at the saturated regime. This has
forced us to restrict our simulation system sizes to L =
10, 20, 40, and 80 in d =141, and L = 5, 10, 20, and 40
in d =2+41. As shown in the inset of Fig. 2, from the log-
log plot of W(L) and size L, we get

o= 1.45+0.1, d=1+1 (4)
T 1097+0.1, d=2+1.
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FIG. 1. Two typical surface configurations for the equilib-

rium RC model in the saturated regime for ¢t = 10000 (upper
curve: a constant 50 is added to h for clarity) and 20000
(lower data) with L =40, N =2,andd =1+ 1.
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FIG. 2. Interface width W (¢) vs time on a logarithmic
scale for d = 1 + 1 (diamond) and d = 2 + 1 (triangle) for
the equilibrium RC model. Inset: interface width W (L) in
the saturated regime vs system size on a logarithmic scale for
d =1+ 1 (diamond) and d = 2 + 1 (triangle) with N = 6.

These values are consistent with @ = (5 — d)/2 within
the error bar. Since the values of 8 and a agree with
the dynamical exponents of Eq. (2}, we believe that the
equilibrium RC model does indeed belong to the same
universality class as Eq. (2).

The continuum Hamiltonian for the equilibrium RC
model can be written as

2n

2
HN/dd_lcc AL (5)

N

with n being a large number under the most general
RC conditions. The corresponding Langevin dynami-
cal equation [7], % = —%I,% + 7, becomes the same as
the fourth-order linear equation given in Eq. (2) with
n = 1. Thus, the Hamiltonian describing the equilibrium
RC model is given by H ~ fdd“lleTzﬂz. (This is for-
mally similar to the equilibrium RSOS model [2] or single
step model [14] which is well described by the continuum
Hamiltonian H ~ [ d4 x| %E|2, leading to the Edwards-
Wilkinson growth equation [15] 2% = 1, V2h +7.) Note
that any curvature-dependent Hamiltonian, containing
the leading term |V2h|? in the functional, will have equi-
librium fluctuations governed by Eq. (2) in the asymp-
totic sense. In fact, it is easy to show that the equilibrium
fluctuations of such a Hamiltonian will have o = (5—d)/2
by considering a random walk in (d — 1)-dimensional cur-
vature space.

In the equilibrium model, the trial probability of depo-
sition P, is the same as the trial probability of evapora-
tion P_ = 1— P,. If P, is greater than P_, we have the
nonequilibrium RC model with the average surface grow-
ing with time. For P, = 1, we find the average growth
velocity V = %) of the surface height to decay expo-
nentially with time, becoming zero at long times when
adding a particle at any site breaks the RC condition.
In the nonequilibrium RC model the surface, therefore,
becomes frozen at long times because no particle is al-
lowed to stick at any site due to curvature restriction.
This is the RC-driven pinning transition mentioned in
the Introduction. Even for a small AP = P, — P_, the
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FIG. 3. InV/(t) vs time for nonequilibrium RC model with
AP = 0.06, N = 2 in d =1+1. The slope gives the negative
decay coefficient —a, where V() ~ e *%. Inset: Ina vs In AP
for the nonequilibrium RC model in d = 1+ 1 (diamond) and
d = 2 + 1 (triangle). The crossover length t* = 1/a diverges
as AP approaches zero.

velocity decreases exponentially V(t) ~ e~ where the
decay coefficient a depends on AP. As an example, we
plot InV(t) against time in Fig. 3, getting a very good
straight line plot for AP = 0.06 and N = 2 in d =1+1.
For very small AP, it takes a very long time for the RC
condition to be operative, but we have verified that down
to AP = 0.04 (d = 2+1) and 0.03 (d = 1+1) the velocity
decays exponentially. We postulate that this exponential
decay of V happens for any nonzero AP. As shown in the
inset of Fig. 3, the decay coeflicient a seems to follow the
power-law behavior (AP)% with § = 2.0 + 0.2 (d=1+1)
and § = 1.96 + 0.2 (d =2+1), supporting the conjecture
that the transition happens at AP = 0. If we define a
crossover time t* = 1/a, then t* diverges as (AP) ™% with
6 =~ 2. We emphasize that this depinning transition at
AP = 0 does not arise simply from a pinning potential
but is driven by the RC condition. (For example, no such
transition occurs in the RSOS growth model.) Since the
surface becomes frozen [in the sense that V(t) decays to
zero] in the nonequilibrium RC model, we conclude that
a = 0. The exponents 8 and z are not well defined in
the nonequilibrium RC model. In Fig. 4 we show some
frozen configurations in the nonequilibrium RC model
with vanishing growth velocity.

We do not yet have a theoretical understanding of the
dynamical pinning transition in the nonequilibrium RC
model. In analogy with the KPZ equation (which adds
the second order nonlinearity |Vh|? to the V2h relax-
ation term of the Edwards-Wilkinson equation), we may
consider a nonlinear equation of the form
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FIG. 4. Two frozen surface configurations for AP = 1
(connected curve) and AP = 0.8 (unconnected data) with

L =40, N =2, and d = 1+ 1 for the nonequilibrium RC
model.

% =vV*h(x,t) + A[V2h(x,t)]?
—yosin[2wh(x, 1)] + n(x,t) (6)

as the generalization of Eq. (2) to describe the nonequi-
librium RC model. The second term in the right-hand
side is the nonlinearity arising from the curvature restric-
tion [16]. The third term is due to the lattice structure
preferring integer multiples of hA. Since the deposition
on the high curvature regime is not allowed, the A term
should be negative for AP # 0. ( There is a similar trend
in the RSOS growth model [17].) For yo = 0, the nonlin-
ear equation given by Eq. (6) has recently been numeri-
cally integrated [18] with the result a & 1.4ind=1+1
without any frozen states [19]. In our nonequilibrium
RC model yo # 0; we speculate that yo is a relevant pa-
rameter (in the renormalization-group sense) for nonzero
A. Unfortunately, we are unable to calculate analytically
[20] the dynamical critical exponents of Eq. (6).

In conclusion, we have introduced a simple RC growth
model which in the equilibrium case is in the same uni-
versality class as the recently studied [5, 6] linear “MBE
growth equation” given by Eq. (2). In the nonequilib-
rium case, the model exhibits a novel pinning transition
where the interface configuration becomes frozen at long
times. The crossover to the depinning point is found to
diverge as a power law in the deviation from equilibrium.
We speculate on the possible continuum nonequilibrium
nonlinear equation which may describe the RC growth
model.
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